Electric car conversion

 

   
   
   
   
   
   

         

Electric cars are the future of the auto industry and quite a few electric vehicles have been introduced to the marketplace but, due to cost, wants, or needs, what is being offered by the car manufacturers will not be suitable for everyone and a lot of people will choose to convert their present vehicle as a more viable solution. Also, an electric car conversion is the only alternative for people who want electric versions of specific vehicles.

Electric vehicles presently on the market (U.S.)  

 

The issue with electric cars has always been trying to achieve more miles between  charges. Several manufacturers use lithium-ion batteries. Some manufacturers are also utilizing a small internal combustion engine; its only purpose is to recharge the batteries. Regenerative braking is also utilized. Advancements in lithium ion cells seems to have the most promise in increased miles per charge. An EV conversion is not as difficult as you might think and (if done right) can achieve results that will rival or surpass what the car manufacturers can do. The advantage of converting to electric are that you no longer have an ICE and the maintenance that go with it; gas, oil, tune-ups, etc. Also, the cost of recharging an electric car is 1/3 that of running an internal combustion engine. The efficiency of an ICE is about 30% compared to an electric motor which is 90% or better. When you consider this, having to recharge your car is a minor inconvenience and an acceptable compromise. On the subject of recharging, there are several companies that are building charging infrastructure across the U.S. Retail outlets, restaurants, & parking garages are also installing charging stations. These massive projects started in September 2010. Click on the "Recharging" link in the content menu on the left side of this page for more information. The page will be updated as needed.

(AC vs. DC)

Facts You Should Know

DC motors

AC motors

DC controllers

DC contactors

Chargers

AC inverter/controller

Throttle pots & foot pedals

DC-DC converters

Displays & Gauges

Batteries

Battery Management System

Recharging connector

Recharging

Conversions

Get Started!

Cost calculator

Tax credit

 

 

EV conversion cost

In order to justify the cost of an EV conversion, it is important to realize that an EV conversion is like getting a new car and that it is actually increasing the value of the vehicle as there will no longer be any cost in regards to gas, tune-ups, oil change, mufflers, broken belts, etc. You are completely changing the drive system.The cost of charging is also a fraction of the cost of gas. After conversion, selling the engine can defray the cost a few thousand dollars depending on the engine to be sold.

The cost of an electric car conversion can vary greatly depending on whether it's AC or DC and the size vehicle to be converted. In general terms, for a typical DC system conversion, you will have about $10,000-$12,000 in parts. AC components will cost you more. The labor cost will range from $5,000 - $8,000 depending on the complexity of the conversion. An AC conversion is a much more efficient conversion, but a DC conversion will be more affordable for many people and we will offer both types. Components are also available through us if someone decides to do their own installation.

Energy usage usually works out to about .4 kWh per mile for DC systems, and .174 - .288 kWh for the more efficient AC systems. You can multiply this by your electricity rate to get a cost per mile. For example, if you pay $0.13 per kilowatt hour, this works out to a little over a nickel a mile for DC and about half that for AC. For comparison, gas at $3.50 per gallon on an efficient 25 mpg car works out to $0.14 per mile.

 

Electric conversion

AC vs. DC

There are several (online) companies that are offering conversion kits. They are dc conversions and use dc motors. We do not offer kits. Instead, we tell you what is available and provide information to help you make an informative decision about each component. This way you can get exactly the components you want instead of pre-assigned components in a kit. The major car manufacturers'  electric cars are AC and is a better drive system than DC but will cost more. They are more preferable in a hilly terrain. These are the advantages:

Regenerative braking without any extra equipment

You can recover a LOT of your battery power during the normal driving process. A few DC systems can do this to some extent also, but they don't do it nearly as well and it always makes them more complex and expensive.

Favorable torque

AC electric car motors can be well matched to your ICE's torque curve so that you don't inadvertently murder your transmission with your normal driving habits. An internal combustion engine is considerably different than an electric DC motor, and the drive system your donor was born with is not designed to withstand the low-end workout your series DC motor is capable of delivering. AC motors provide constant torque over a wide range of RPM. Top rotor RPM speed of a typical DC motor is about twice as low as for an AC motor requiring you to shift gears, thus loosing torque at the wheels. Normally vehicles using DC systems avoid the need for shifting by starting in 3rd or even 4th gear so the RPM at freeway speeds remains manageable. This, however, aside requiring a very large motor (to provide high starting torque at the wheels while on 3rd gear), greatly stresses transmission components normally not intended for such abuse, sometimes resulting in broken gear teeth, stripped splines, twisted shafts, damaged CV joints....AC setups don't have these issues.

No motor brushes

There are all these issues with brush advancing, seating, commutator arcing and self-destroying at high RPM; and they're no good in a regenerative braking environment. If electric reverse is used, the requirements for brush advance for forward and reverse rotation direction are contradictory. If you want to avoid these problems altogether, use an AC motor.

Programmability

A dc controller COULD be programmable, but usually isn't. AC inverters are perfectly matched to the motor they're sold with, and you can set all the software parameters yourself to best fit your driving style and your batteries. You can set the battery voltage to maximum for regen and minimum for driving (for battery protection), max battery current for driving and regen separately, throttle response profile, off-throttle regen option, tachometer output, creeping current, power mode and economy mode limits, acceptable inverter and motor temperature, electric reverse, safe motor RPM range (separately for forward and reverse) and much more . All programmable parameters can be displayed on a PC/laptop screen in real time in digital and analog graphic form as you drive, so you can optimize the settings while in the vehicle. Configurable graphs plotted and can be stored for later analysis and comparison.

Safety

If a DC controller's power stage fails, the entire pack voltage - all 120 or 140 volts or whatever - is applied to the motor. In contrast, power stages of an AC inverter are used to "generate" power for the motor, not "regulate" it. So in case of a failure, AC generation just stops and the motor just looses power.

Electric reverse is as easy as adding a small toggle switch on the dash

All it takes for an inverter is to swap sequence of 2 phases, so the rotor runs in opposite direction. It's a bit more complicated with DC electric car motors.

Ease of installation

Contrary to popular opinion, AC systems are easier to install than DC systems...not harder. Yes, the AC inverter itself is a complicated instrument, but then, so is the DC controller. They're both using computers, but that's nothing unusual, since so is your typical ICE. To wire a Siemens AC system you have to make 6 connections: 3 phases to the motor, 2 cables to the battery and plug encoder cable. The rest is low voltage wiring: +12V DC-DC output - to 12V wiring system in the car, 3 wires to the ignition switch,  3 wires to the throttle pot, 3 wires to the direction switch, and 2 wires to the (optional) start inhibit switch. This wiring harness is pre-fabricated and included.

OR

A typical setup for a DC system with series wound motor: Two cables from the battery to the main contactors. Three jumper cables for reversing contactors. Two cables from the main contactors to the controller. Two cables from the controller to the motor. One cable to jump the field and armature of the motor. Two wires to the DC-DC converter input. Low voltage side: 3 wires to ignition switch. Two wires to the throttle pot. Two wires to the pre-charge contactor coil. Two wires to the reversing contactors coils. Two wires to the power resistor pre-charging capacitors in the controller. Two wires for start inhibit switch. One heavy wire to ground DC-DC converter neg. side, and one - to connect its output to the 12V system in the car. Two wires from the motor temp switch to the light on the dash. Typically, no harness exists or is included; you come up with your own.

 

Permanent magnet DC motors

The biggest drawback with permanent magnet DC motors is that they're noisier. Like all brushed DC motors, the brushes generate electrical radio interference. But unlike other types of brushed electric motors used in electric cars, like the series wound DC motors below, which have windings which provide natural filtering of electrical noise, the PM motors have no natural filtering effect in their design...so they're noisy. DC motors are (relatively) low voltage high current devices. At high voltages (>200VDC) the brushes will arc especially at high RPM. DC solutions for EVs is using controllers and motors which are not designed or intended to be used in EV and even in outdoor environment (like common Curtis PMC controllers). At best, controllers for the fork lifts and golf carts are in common use. DC motor has giant torque at stall and it quickly diminishes as RPM goes up forcing you to shift gears.


Facts You Should Know

 


Below are some components that are available for AC and DC conversions.

Most companies only list the products that they are an authorized reseller for. Since our goal is also to help educate people, we also list other products that are on the market as well. More products will be available in the near future.

(click on any image for information)

DC motors

D&D motor systems
D&D motor systems
Netgain
ADC motors
AES-15
ES 31-B orES-63
warP 9
(AC or DC)

 

AC motors

Brusa
HPEVS
MES-DEA
MES-DEA
ADC
HSM6.17.12
 
(air-cooled)
(water-cooled)
(AC or DC)

 

DC controllers

EVnetics
EVnetics 
Alltrax
Curtiss
Sevcon 
Soliton Jr.
Soliton 1
7245
1231C
Millipak 4Q
$1,850.00
$2,900.00
(see all models)
(see all models)
(see all models)
     

                    

DC contactors

curtis/albright
Tyco
Tyco
(see all models)
101-LEV200A4ANF
101-LEV200A4NAA

 

Chargers

Zivan
Netgain  
Brusa
Elcon
NG3,NG5,  NG7,NG9
PulsaR
       NLG 5        (see all models)

    PFC 5kw      (see all models)

 

AC inverter/controller

Brusa
Sevcon
Curtis
DMC524
(see all models)
 1236 (see all models)
$15,000
   
                                                                                                        

Throttle pots & foot pedals
Magura
NetGain
EVnetics
twist grip throttle
Hall-Effect Cable-Pull Throttle
Throttle Assembly
 
$160.00
$170.00
 

                                                                                                                                                  

DC-DC converters

Sevcon
Brusa
MES-DEA
(see all models)
BSC623/BSC624
 

 

Displays & Gauges

Sevcon
Sevcon
Sevcon
EVision displays
 
power gauge
smartview gauge
Clearview
 
       
       

 

Batteries/cells
Calb CA180FI
 
180Ah/3.2v./576Wh
272x180x71mm
10.70x7.08x2.77inches
improved power density, thermal performance,
cold weather capacity, and longer life cycle.
$255.00
(click on image to see catalogue)

 

   BMS (battery management system)        

Elithion
Elithion
Orion
Lithiumate Lite
Lithiumate Pro
 

This BMS monitors, evaluates, balances and protects a Li-Ion battery pack.

  • Lowest price digital BMS
  • Designed specifically for EV conversions
  • Off the shelf
  • Maximum ease of installation and configuration: no crimping required
  • Distributed (a cell board is mounted on each cell: measures voltage and temperature, balances the cell)
  • For large packs: up to 200 cells (~ 700 V), in up to 8 banks
  • Supports prismatic cells
  • Supports mid-voltage Lithium-ion chemistries:
    • Lithium iron phosphate (LFP): LiFePO4 , LiFeYPO4
    • LiCoO2 (LCO) - Lithium cobalt oxide
    • LiMn2O4 (LMO) - Lithium manganese oxide
    • LiNiMnCoO2 (NMC) - Lithium nickel manganese cobalt oxide
    • LiNiCoAlO2 (NCA) - Lithium nickel cobalt aluminium oxide
  • Protects cells from over current, under/over voltage, under/over temperature
  • Compatible with most chargers and most motor drivers
  • Graphics User Interface
  • Optical isolation between pack and low voltage circuit

NOTE: The Lithiumate Lite is exclusively for EVs that use up to 200 prismatic cells in a single series string, and do not need a CAN bus. For other applications, the Lithiumate Pro is required.

 

 

 

 

This BMS monitors, evaluates, balances and protects a Li-Ion battery pack.

  • Off the shelf, plug-and-play
  • For professional applications: commercial grade, metal case (not sealed)
  • Distributed (a cell board is mounted on each cell: measures voltage and temperature, balances the cell)
  • Minimum number of wires in HV pack, single wire to adjacent cell boards
  • For large packs: up to 256 cells (~ 900 V), in up to 16 banks
  • Supports all cell form factors: prismatic, small & large cylindrical, pouch
  • Supports mid-voltage Lithium-ion chemistries:
    • Lithium iron phosphate (LFP): LiFePO4 , LiFeYPO4
    • LiCoO2 (LCO) - Lithium cobalt oxide
    • LiMn2O4 (LMO) - Lithium manganese oxide
    • LiNiMnCoO2 (NMC) - Lithium nickel manganese cobalt oxide
    • LiNiCoAlO2 (NCA) - Lithium nickel cobalt aluminum oxide
  • Protects cells from over current, under/over voltage, under/over temperature
  • Dissipative (passive) balancing (top balance)
  • Sophisticated, digital technology: reports each cell's voltage and temperature
  • CAN and RS232 communications
  • Fully configurable, field programmable
  • Cable mount Hall Effect current sensor
  • Contactor drivers with precharge
  • Optical isolation between pack and low voltage circuit
  • Pack isolation loss detection (optional)
  • Compatible with these chargers
  • Compatible with these motor drivers
  • Graphics User Interface
  • State of charge calculations.
  • Cell over-voltage and under-voltage protection.
  • Intelligent battery balancing (passive).
  • Battery charger control.
  • Pack temperature monitoring.
  • Monitors health of battery pack.
  • Protects cells from over current, under/over voltage, under/over temperature based on the programmed minimum and maximum values in the battery profile.                                
  • Supports:
  • LiFEPO4, LiFeYPO4 (Lithium iron phosphate)
  • LiMn2O2 - Lithium manganese oxide
  • LiFeMnPO4 -
  • Li-Ion -
  • LiPo - Lithium Polymer
  • LiCoO2 - Lithium cobalt oxide

Intelligent, efficient cell by cell balancing is provided to maximize the usable range of the battery. The BMS also monitors the health of both individual cells and the total pack and will trigger error trouble codes if either the pack or individual cells are in poor health.

System includes:                           

NOTE: Purchasing pre-assembled wiring harnesses is optional. If the Orion BMS units are ordered without the pre-assembled wiring harnesses, crimps and connectors are provided. Additional sets of connectors and wiring crimps can be purchased separately. If the pre-wired harnesses are ordered, the crimps and connectors are not included since they are not necessary. 

 

 

 

configuring and ordering information
configuring and ordering information
Current Sensor Size:
     

 

 Elithion and Orion BMS comparison sheet

Orion comparison sheet

Elithion User Manual

Orion BMS Specifications

Orion BMS Operation Manual

Orion Wiring & Installation Manual

Orion Software Utility Manual

 

Recharging connector

 
click on image for info
SAE combo connector (U.S. standard)
$425.00 $361.25
 

 

Other components

Lovejoy coupler

(electric motor to transmission) 

 

For some good prices on many of the items pictured above, click on the banner below.

 

Get Started!

You can compare the fuel cost per mile between a gasoline car vs. an electric model using the calculator below.

kWh = total battery pack

Watt hr/mi.: 10:1 ratio (example) 3,000 lb. vehicle (after conversion) = 300wh/mile

$/Gal:
MPG:
gas cost/mi:
¢/kWh:
Watt hr/mi:
electric cost/mi:
                                           

 

The eGallon: How Much Cheaper Is It to Drive on Electricity?

http://energy.gov/articles/egallon-how-much-cheaper-it-drive-electricity

 

 

For any questions or to order, call us at: 978-798-1440 or email us at: customerservice@xaviertechnologies.com

Many states have incentives as part of a federal nationwide program that encourages the use of alternative fuels in vehicles.

Find your state's incentives here at the U.S. Dept. of Energy.

Other sites:

 

EV conversion tax credit

 

We have coordinated efforts with Jay Friedland who is the legislative director at Plug In America. During the third week of February, we contacted Senator Debbie Stabenows' office who is on the Senate Finance Committee (decision maker on this issue) and Senator Elizabeth Warrens' office who is a known activist/fighter on issues. Our goal is to get the (expired) 10% tax credit reinstated & increased to 20 or 25%, especially if the existing tax credit on new EVs is increased from $7,500 to $10k. This would make going electric much more affordable and increase business for conversion shops, our component suppliers, & charger manufacturers and would boost a sector of the economy & create jobs.

The OEMs are offering a very limited selection of vehicle types and due to cost, wants, or needs; the EV conversion industry has the potential of becoming a very big market and in some cases are getting better results than the OEMs as the cells that are available are superior to what is being used by GM, Nissan, and others. It has already been proven through market research that cost is the biggest obstacle for potential EV customers. This industry (and its counterparts) has the potential to stimulate a sector of the economy and create a lot of jobs but is being stifled by Washington and its bureaucracy.

We are rallying/organizing support on this issue which will include every conversion shop in the U.S., component suppliers, & charger manufacturers.

 

Incentives for EV Conversions petition

Incentives for EV conversions.pdf


Whether you are in the EV business, a component supplier, or an advocate, PLEASE
sign it and copy it into the message text field at this link: http://www.baucus.senate.gov/?p=contact

OR mail to:

Max Baucus
Chairman
Committee on Finance
United States Senate
219 Dirksen Senate Office Building
Washington, D.C. 20510

OR FAX to: 202-228-0554

 

Copyright © 2014 Xavier technologies. All right reserved.

(Incentives for EV Conversions petition material is excluded).